Symbolic computation of some new nonlinear partial differential equations of nanobiosciences using modified extended tanh-function method

نویسندگان

  • Dalibor L. Sekulic
  • Miljko V. Sataric
  • Milos B. Zivanov
چکیده

By means of computerized symbolic computation and a modified extended tanhfunction method the multiple travelling wave solutions of nonlinear partial differential equations is presented and implemented in a computer algebraic system. Applying this method, we consider some of nonlinear partial differential equations of special interest in nanobiosciences and biophysics namely, the transmission line models of microtubules for nano-ionic currents. The nonlinear equations elaborated here are quite original and first proposed in the context of important nanosciences problems related with cell signaling. It could be even of basic importance for explanation of cognitive processes in neurons. As results, we can successfully recover the previously known solitary wave solutions that had been found by other sophisticated methods. The method is straightforward and concise, and it can also be applied to other nonlinear equations in physics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics

In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...

متن کامل

Exact solutions for nonlinear partial differential equations by using the extended tanh - method Mahmoud

The tanh method is a powerful solution method; various extension forms of the tanh method have been developed with a computerized symbolic computation and is used for constructing the exact travelling wave solutions, of coupled nonlinear equations arising in physics. The obtained solutions include solitons, kinks and plane periodic solutions. First a power series in tanh was used as an ansatz t...

متن کامل

Modified extended tanh-function method for solving nonlinear partial differential equations

Based on an extended tanh-function method, a general method is suggested to obtain multiple travelling wave solutions for nonlinear partial differential equations (PDEs). The validity and reliability of the method is tested by its application to some nonlinear PDEs. The obtained results are compared with that of an extended tanh-function method and hyperbolic-function method. New exact solution...

متن کامل

Solitary wave and periodic wave solutions for variants of the KdV–Burger and the K(n, n)–Burger equations by the generalized tanh–coth method

An application of the generalized tanh–coth method to search for exact solutions of nonlinear partial differential equations is analyzed. This method is used for variants of the KdV–Burger and the K(n, n)–Burger equations. The generalized tanh–coth method was used to construct periodic wave and solitary wave solutions of nonlinear evolution equations. This method is developed for searching exac...

متن کامل

Application of Symbolic Computation in Nonlinear Differential-Difference Equations

A method is proposed to construct closed-form solutions of nonlinear differential-difference equations. For the variety of nonlinearities, this method only deals with such equations which are written in polynomials in function and its derivative. Some closed-form solutions of Hybrid lattice, Discrete mKdV lattice, and modified Volterra lattice are obtained by using the proposed method. The trav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 218  شماره 

صفحات  -

تاریخ انتشار 2011